
International Journal of Scientific & Engineering Research Volume 13, Issue 6, June-2022 232

ISSN 2229-5518

IJSER © 2022

http://www.ijser.org

User based ranking algorithm for web-based
distributed version control system

Jilsa Chandarana

Abstract— The field of computer science is emerging which fundamentally increases the need of programmers. One of the essential tool

for a programmer is version control system. The web-bases services such as GitHub provide excellent helping hand to them. A common

feature of such applications is search option. When performing a search, the items can be better sorted taking user features into account

which lead to an idea of ranking algorithm specially designed for such platforms. It takes the general structure of database and convert it

into graph database to easily define relation between different entities. The paper suggests a simple method for such recommendation and

provides a naïve implementation in Cypher query language using Neo4j platform.

Index Terms— Algorithm, Cypher, Neo4j, Query, Ranking algorithm, User-based algorithm, VCS

—————————— ——————————

1 INTRODUCTION

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research Volume 13, Issue 6, June-2022 233

ISSN 2229-5518

IJSER © 2022

http://www.ijser.org

HE paper describes a method to score the searched
items according to their relationship with user.
Common to most of the approaches, the graph data

structure is used and linear arithmetic operations are per-
formed to decide the rank. The motivation for developing
this idea came from personal experience while searching
for a repository on web-based version control system.
Upon executing the search query, tons of results were
presented and required solution was later in the list
which took time and efforts to find. The idea was origi-
nated from there and a problem statement was defined as
constructing a ranking algorithm for sorting the results of
version control system according to user preference so
user will have high chances to get required item on the
top.

2 BACKGROUND

2.1 Version Control Systems

A version control system is a very useful tool for software
development and it is widely adopted in the industry
now. It helps the developer to keep track of continuous
changes occurring in a project. It has many applications
in the field of software merging, collaboration modelling,
software changes, software branching, open-source soft-
ware projects, curriculum development etc.[5] It gives the
developers an upper hand in keeping a backup and main-
taining the modifications. There are two types of version
control systems available. 1. Centralized Version Control
System (CVCS) and 2. Distributed Version Control Sys-
tem (DVCS).

 Centralized Version Control System:
o In centralized version control system,

the repository is stored at single place
like a server and every user can ac-
cess that using their local system.
Every time user needs to commit the
changes, they need to contact the
server. The popular examples of
CVCS are Concurrent Version System
(CVS), perforce and subversion.

 Distributed Version Control System:
o On contrary, the distributed version

control system copies the entire
codebase to every developers’ local
system. Its major advantage is that
users can work offline which is way
faster. It is the backbone of Open

Source Software (OSS). Some famous
examples of DVCS are Git and Mer-
curial.[1] With the evolution of dis-
tributed version control system, some
DevOps software emerged such as
GitHub and GitLab. They are web-
based platforms which help users
with code management. Basic infor-
mation about such platforms is given
below.

2.2 GitHub

GitHub is a platform for internet hosting and software
development. For underlying version control, it uses Git.
Its development began in 2007 in Ruby on Rails and it
was launched in 2008. It was taken over by Microsoft in
2018. It is commonly used for open source projects and
collaborating with them. The user can easily upload their
code to GitHub and other developers can collaborate
them. Moreover, the static websites are also easily hosted
on this.[2]

2.3 GitLab

GitLab was an open-source project released under MIT
license. It is a cloud native application which makes it
highly secure. Initially it was developed using Ruby but
as time passes, some of its features were also created us-
ing GO. It allows the user to check project development
using charts. It puts the restriction on number of private
repository a user can have along with integrated API and
third party server. It provides useful tool for entire de-
velopment team or DevOps for efficient workflow. The
popular users of GitLab are IBM, NVIDIA, GNOME,
Goldman Sachs etc.[3]

2.4 BitBucket:

BitBucket is another competitor managed by Atlassian.
It also works on Git version control and provides free
accounts as well as commercial plans for unlimited pri-
vate repositories. Unlike GitHub and GitLab which are
written in Ruby, BitBucket is written in Python and Djan-
go framework. It was released in 2012 and it was not an
open source project.[4]

2.5 Ranking Algorithm

Ranking algorithms are crucial part of search engines.
Once the search engine fetches all the required docu-
ments, ranking algorithms decides the order to sort the
items to show as final output to the user. The result of
ranking algorithm highly affects the user experience and
satisfaction. Suppose you search for a website in a search
engine that you’ve visited many times before. The search
engine finds a lot of websites with similar names and
without a ranking algorithm, your website may show up
at last page. Over the time, many ranking algorithms
have been developed and actively used in the market to

T

————————————————

 Jilsa is currently pursuing bachelors degree program in Computer Science
in Charotar University of Science & Technology, India, PH- 02697 265
011. E-mail: 18dcs010@charusat.edu.in

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research Volume 13, Issue 6, June-2022 234

ISSN 2229-5518

IJSER © 2022

http://www.ijser.org

provide exceptional service to a user. Some of the famous
ranking algorithms have been discussed here.[5]

3 LITERATURE REVIEW

The history of ranking algorithm goes back to InDegree
algorithm that formed the basis for its successors. It was
calculating ranks based on number of links pointing to a
webpage. Following that, PageRank came into the exist-
ence. PageRank is one of the most famous ranking algo-
rithm used by Google. It works on the graph structure of
internet. It takes the incoming and outgoing links of
webpages into consideration to rank the webpages. If a
webpage has many backlinks or it has few highly ranked
backlinks pointing to it then it will get a higher score and
will be shown on the top. PageRank can be computer for
any size of collection of documents. It uses an iterative
approach to reach to the output.[6] HITS is abbreviation
of Hyperlink-Induced Topic Search. HITS algorithm
gives equal importance to backlinks as well as forward
links. It uses the concept of Hub and Authorities. It is said
that “a good hub is a page that points to many good au-
thorities, and a good authority is a page that is pointed to
by many good hubs”. It finds the subset of containing
relevant hubs and authorities before calculating the score.
That’s why if the query changes, the resulting subset
changes so it’s query sensitive.[7] SALSA stands for Sto-
chastic Approach for Link-Structure Analysis. It is an
improved version of HITS which results in reduction of
response time of algorithm. It is similar to PageRank in
the sense that it uses random walk through Markov
Chains that is a chain of hubs and a chain of authorities.
It shows better immunity again Tightly Knit Community
(TKC) than HITS. Twitter uses SALSA algorithm to rec-
ommend other users to follow.[8] In recent time, many
ranking algorithms have been developed as customized
solutions. As suggested by P. Ghosh et al.[9] the Pag-
eRank algorithm can be modified by taking location and
time into consideration. The terms were simply added
together to calculate the rank. They stated that number of
hitting of pages also plays an important role. In 2020, L. J.
Sankpal et al.[10] presented a re-ranking algorithm which
used links collected from different web browsers and
after preprocessing, the feature extraction was performed
to arrange the pages according to fitness measures. Huda
Alghamdi et al.[11] proposed a weighted algorithm
which also generated the web graph by the data provided
by crawler. In this method, each page is assigned an ini-
tial rank and some mathematical operations were per-
formed to decide its final rank. Again, the situation de-
cides which platform is best for your use but there are
some common features that are taken into the account for
generalization of this method. In web-based applications
like there, users can create their account to keep track of
their section. They can follow each other for further de-

tails and create their own repositories. Repositories are
nothing but the project directory which contains all the
required files. The repositories can be forked and pull
requests can be sent. The grouping option is also provid-
ed to work with limited and chosen developers. Most of
the ranking algorithms work on graphical structure of
web. Generally speaking, the structure of web-based ver-
sion control system database can be converted to a graph.
The nodes can be of various types such as user, reposito-
ries or organization. That forms the bottom line of this
paper. Such platforms store millions of repositories of
millions of users. The search option is provided to find
the required repository or user quickly. But due to plenty
of options, it may get inconvenient to find required item
from list of thousand. That’s why this paper suggests a
method to list items based on user preferences. Out of all
the matching repositories or users, the algorithm will
score them based on user-preference and decide its rank-
ing.

4 PROPOSED APPROACH

Before using this searching approach, it is assumed that
the
required items were already filtered. Like by searching a
keyword, list of all matching repositories or users has
been
found i.e. indexing has been performed by any possible
methods.[12] Applying this algorithm after filtering re-
duces
the processing time.
The algorithm is based on common factors of version con-
trol
system including user follow, collaborators, organiza-
tions
starred repositories, forked repositories and pull requests.
Here users and repositories are nodes of the graph so it is
assumed that username of a user will be unique.

5 ALGORITHM

Input: The data of existing users, repositories and

organization

Output: A list of searched items sorted by user preference

1. Create the graph of existing organizations, users and

repositories with their corresponding attributes like

organization name and established year for organization...

username, organization, contact info etc. for users and title,

owner, total stars, id (username/title for uniquely identify a

repository) etc. for repository.

 2. Join the nodes with various types of edges. Like an edge

from a user who follows another user, an edge from a

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research Volume 13, Issue 6, June-2022 235

ISSN 2229-5518

IJSER © 2022

http://www.ijser.org

repository to parent repository which was forked, an edge

from a user to repository which they starred etc.

Step 2 will produce a directed graph.

3. The static weights are assigned as requirement to all the

edges.

4. The user which is searching is the starting node. The score

for all repositories or users is computed as follow.

With increase in distance, the relevance decreases, so the

weight of an edge is divided by its index i.e. the position it

appears in the path so that the further edges don’t influence

much in the result.

As the number of paths increases, the sum will increase too.

That’s why it is then divided by number of paths to take

average of them.

5. Sort the items from score as an output.

6 NAÏVE IMPLEMENTATION AND RESULTS

In this implementation, a dummy dataset is used. The CSV

files of data is uploaded to google drive and loaded into

Neo4j for further processing. Three types of nodes are

created named Organization, User and Repository. The

loading of data is done using LOAD CSV as specified in

below query.

// Loading organizations

LOAD CSV WITH HEADERS FROM

"https://drive.google.com/uc?export=download&id=1PKEp0

AXvXM4p-VOL-c8MSoOHLhJNG7ou" AS row

CREATE (org: Organization {name: row.Organizations,

established: row.Established})

// Loading Users who do not belong to any organization

LOAD CSV WITH HEADERS FROM

"https://drive.google.com/uc?export=download&id=1ul8ichc

X3xyIgG3B3fF1cF0t4wpp8wOf" AS row

WITH row WHERE trim(row.organization) IS null

CREATE (usr: User {name: row.name})

// Loading users who belong to some organization and they

are connected with corresponding organization node

LOAD CSV WITH HEADERS FROM

"https://drive.google.com/uc?export=download&id=1ul8ichc

X3xyIgG3B3fF1cF0t4wpp8wOf" AS row

WITH row WHERE trim(row.organization) IS NOT null

MATCH (org: Organization {name: row.organization})

MERGE (usr: User {name: row.name})

CREATE (usr)-[:organization]->(org)

There are six types of relations are created. Namely

“createdBy” to relate repository to their creator, “follow” to

show which user follows whom, “collaborate” to check

which user collaborates to which repository, “starredBy”

which indicates which users have starred any repository,

“forked” to connect child repository to its parent and

“pullrequest” which points to repositories which sent

pullreqquest to other repositories.

They are also noted in CSV file and loaded in the same way.

// Loading “createdBy” relation

LOAD CSV WITH HEADERS FROM

"https://drive.google.com/uc?export=download&id=1F7e_t

Me6cWUAI-mzgKLQymMXa61wBLfg" AS row

MERGE (usr: User {name: row.user})

CREATE (repo: Repository {title: row.title, owner: row.user,

keywords: split(row.keywords,","), id: row.id})-[:createdBy]-

>(usr)

// Loading “follow” relation

LOAD CSV WITH HEADERS FROM

"https://drive.google.com/uc?export=download&id=1rKYM

_ZeSgspTzhtCCZofvg_l0D7sv6Nf" AS row

MERGE (usr: User {name: row.user1})

MERGE (usr2: User {name: row.user2})

CREATE (usr)-[:follow {weight: row.weight}]->(usr2)

// Loading “collaborate” relation

LOAD CSV WITH HEADERS FROM

"https://drive.google.com/uc?export=download&id=1XDXM

GUhEOzcyXok2OpIL-b18DJh3sCsF" AS row

MATCH (repo: Repository {title: row.title})-[:createdBy]-

>(usr: User {name: row.user}), (usr2: User {name:

row.user2})

CREATE (repo)-[:collaborate {weight: row.weight}]->(usr2)

// Loading “starredBy” relation

LOAD CSV WITH HEADERS FROM

𝑤𝑒𝑖𝑔ℎ𝑡(𝑒)
𝑖𝑛𝑑𝑒𝑥(𝑒)𝑒 ∈ 𝑝𝑎𝑡 ℎ

𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑝𝑎𝑡ℎ𝑠

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research Volume 13, Issue 6, June-2022 236

ISSN 2229-5518

IJSER © 2022

http://www.ijser.org

"https://drive.google.com/uc?export=download&id=1WkW

mC7i0WQWqO5JXQ47fcc1nBgp0aZ-6" AS row

MATCH (repo: Repository {title: row.title})-[:createdBy]-

>(usr: User {name: row.user2}), (usr2: User {name:

row.user})

CREATE (repo)-[:starredBy {weight: row.weight}]->(usr2)

// Loading “forked” relation

LOAD CSV WITH HEADERS FROM

"https://drive.google.com/uc?export=download&id=1Krc0m

hgY-LIxUfjyrUqiIOrhBAEWqLPn" AS row

MATCH (repo: Repository {title: row.title})-[:createdBy]-

>(usr: User {name: row.user}), (repo2: Repository {title:

row.title2})-[:createdBy]->(usr2: User {name: row.user2})

CREATE (repo)-[:forked {weight: row.weight}]->(repo2)

// Loading pullrequest” relation

LOAD CSV WITH HEADERS FROM

"https://drive.google.com/uc?export=download&id=1pKcb7

GXigao_zTka4URs4Tt1hQFXzygE" AS row

MATCH (repo: Repository {title: row.title})-[:createdBy]-

>(usr: User {name: row.user}), (repo2: Repository {title:

row.title2})-[:createdBy]->(usr2: User {name: row.user2})

CREATE (repo)-[:pullrequest {weight: row.weight, status:

row.status}]->(repo2)

We can also explicitly give weights to any edges.

// Assigning 5 unit weights to “organization” edge

MATCH (:User)-[org: organization]->(:Organization)

SET org.weight = 5

Fig 1. Graph Visualization

To make our future work easy, we can convert all the weights

to integer so arithmetic operations can be performed on them

without any problem.

// Converting weights to integers

MATCH ()-[r]->()

SET r.weight = toInteger(r.weight)

Now that our graph is ready, we can query our database to

show us list of recommended items.

To search for repositories recommended for user “Bob”, the

query can be in following form.

MATCH path = (usr: User {name: "Bob"})<-[x*]-(repo:

Repository)

UNWIND relationships(path) AS rels

WITH sum(rels.weight /

(apoc.coll.indexOf(relationships(path), rels) + 1)) as SCORE,

last(nodes(path)) AS ND

RETURN ND.id, avg(SCORE) as RESULT

ORDER BY RESULT DESC

We are finding all paths between Bob and all repositories

which will be stored in path variable. Path is the list of all

possible paths so we will take one path at a time and

compute weight / index of edge. Once that is computed, we

will average all the score given and list them which will be

returned along with ID of repository. The output of this query

in text form is given in fig 2.

Fig. 2. Recommended Repositories for user named “Bob”

Similarly, if user “Allen” is searching for user, the score is

computed in the same way.

MATCH path = (usr: User {name: "Allen"})<-[x*]-(usr2:

User)

UNWIND relationships(path) AS rels WITH sum(rels.weight

/ (apoc.coll.indexOf(relationships(path), rels) + 1)) as

SCORE, last(nodes(path)) AS ND

RETURN ND.name, avg(SCORE) as RESULT

ORDER BY RESULT DES

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research Volume 13, Issue 6, June-2022 237

ISSN 2229-5518

IJSER © 2022

http://www.ijser.org

Fig. 3. Recommended users for user named “Bob”

As intended, the algorithm scores the items accordingly
and sort them. But as shown, due to self-loops and unad-
justed weights, the user himself may get less score than
their closest neighbors.
The algorithm gives output that consists of connected
nodes. It can be assumed that rest of nodes are at equal
and least priority from user’s point of view.

7 ADVANTAGES

The main advantage of this algorithm is its simplicity. No

costly operation is performed. It can be naively implemented

using aggregate functions only.
Another big advantage is its flexibility. It is highly
customizable as the weight parameter can be modified.
Changing the weights will yield a different result. We can
fine-tune the parameters in future by analyzing user
requirements as well. And even in cases such as pullrequest,
different weights can be assigned according to their status
such as “Active” or “Close”. The self-loops can also be
added to prioritize the user more.

8 DISADVANTAGES

Finding all possible paths in huge dataset can be time and

resource consuming. It may not respond in expected time in

such case. To solve that problem, the maximum length of

path can be fixed so that items further away from that

threshold is not considered for calculation.

9 CONCLUSION

In this paper, a method was proposed to rank items from

search option especially designed for web-based version

control applications. As graph datasets are evolving, the

graph database is chosen for implementation. Neo4j is

leading platform for such purpose with variety of services

and extra ordinary user experience. The method is highly

customizable which offers the user to change its parameters

as requirements. But it can provide a light weight solution as

ranking algorithm especially for small to moderate graphs.

REFERENCES

C. Rodríguez-Bustos and J. Aponte, "How Distributed Version Control

Systems impact open source software projects," 2012 9th IEEE

Working Conference on Mining Software Repositories (MSR), 2012,

pp. 36-39, doi: 10.1109/MSR.2012.6224297.

[2]. F. Chatziasimidis and I. Stamelos, "Data collection and analysis of

GitHub repositories and users," 2015 6th International Conference on

Information, Intelligence, Systems and Applications (IISA), 2015, pp.

1-6, doi: 10.1109/IISA.2015.7388026.

[3]. Cortés Ríos, Julio César & Kopec-Harding, Kamilla & Eraslan, Sukru

& Page, Christopher & Haines, Robert & Jay, Caroline & Embury,

Suzanne. (2019). A Methodology for Using GitLab for Software

Engineering Learning Analytics.

[4]. Puthea, Khem & Lyta, Ly. (2017). The comparison of collaboration and

communication software. 10.13140/RG.2.2.13995.44326.

[5]. Signorini, Alessio. (2005). A Survey of Ranking Algorithms.

[6]. Patel, Punit & Patel, Kanu. (2015). A Review of PageRank and HITS

Algorithms. International Journal of Advance Research in Engineering,

Science & Technology. 2. 2394-2444.

[7]. International Journal of Engineering Research & Technology (IJERT),

Vol. 1 Issue 8, October – 2012, ISSN: 2278-0181

[8]. Lempel, R. & Moran, Shlomo. (2001). SALSA: The stochastic

approach for link-structure analysis. ACM Trans. Inf. Syst.. 19. 131-.

10.1145/382979.383041.

[9]. P. Ghosh and S. Sen, "Time and location based summarized PageRank

calculation of Web pages," 2014 IEEE International Conference on

Industrial Technology (ICIT), 2014, pp. 788-791, doi:

10.1109/ICIT.2014.6894920.

[10]. L. J. Sankpal and S. H. Patil, "weWeb Page Re-Ranking using Squirrel

Search Rank Algorithm," 2020 3rd International Conference on

Intelligent Sustainable Systems (ICISS), 2020, pp. 271-278, doi:

10.1109/ICISS49785.2020.9315998.

[11]. H. Alghamdi and F. Alhaidari, "Extended User Preference Based

Weighted Page Ranking Algorithm," 2021 National Computing

Colleges Conference (NCCC), 2021, pp. 1-6, doi:

10.1109/NCCC49330.2021.9428844.

[12]. Kalyani, Darshita & Mehta, Dr. (2017). Paper on Searching and

Indexing Using Elasticsearch. International Journal Of Engineering

And Computer Science. 10.18535/ijecs/v6i6.45.

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research Volume 13, Issue 6, June-2022 238

ISSN 2229-5518

IJSER © 2022

http://www.ijser.org

IJSER

http://www.ijser.org/

